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Abstract-The onset of surface tension driven stationary cnculation in a thin film flow down a heated 
incline is studied by use of linear theory. In the limiting case of a horizontal liquid film, the onset of 
circulation takes place at finite critical wave numbers and Marangom numbers for a large range of 
relevant flow parameters if the stabilizing effect of gravity neglected by previous workers is taken into 
account. If the angle of inclination @ of the incline is so small that sin 0 << 1 and if the Rayleigh number is 
of order sin3 @, then the flow structure corresponding to the neutrally stable state is that of stream-wise 
oriented vorticies. The critical Marangoni number of the film on a heated incline is smaller than that of 

the corresponding horizontal film by an amount sin2@F where F depends on relevant flow parameters. 

NOMENCLATURE 

c 

d,*’ 
heat capacity; 
film thickness ; 

h, (1 -_v2Y2; 
k thermal conductivity ; 

Pt dimensionless pressure = P/(&&d*); 

Pr, Prandtl number = v,/K, ; 

47 heat-transfer coefficient : 
& surface tension ; 
6 time; 

?: temperature; 

u, velocity component in X direction ; 
u’, I/‘, w’, perturbation velocity components 

in X, Y Z directions; 
u, v, w, dimensionless perturbation velocity 

components = (U’V’W’)/(lc,/d); 

O*, dimensionless steady state velocity, 
in x-direction ; 

v, velocity vector; 
X, Y, Z, dimensional Cartesian coordinates; 
x, y, z, dimensionless Cartesian 

coordinates = X/d, Y/d, Z/d. 

Greek symbols 

isobaric thermal expansion 
coefficient = - (l/p)(?p/ST),; 
a temperature difference in the 
liquid = T, - T, ; 
dimensionless free surface.deflexion = B/d; 
dimensionless temperature 
perturbation = T/AT; 
thermometric conductivity ; 
dynamic viscosity ; 
kinematic viscosity ; 
density ; 
dimensionless time = t(d’/ic,); 
angle of inclination of the film to 
the horizontal ; 
frequency of the disturbance. 

Dimensionless groups 

c. Crispation number = Sd/p,x, ; 
Pe, PC&t number = gd3/v,k-, = WeC; 

M. Marangoni number = - S,ATJ/L,,, K, ; 
Bi, Biot number = qdlk,; 

Ra. Rayleigh number = gd3yAT/v,K, 
= PeyAT; 

We, Weber number = p,yd*/S. 

Superscripts 

steady state quantities; 
disturbance quantities. 

Subscripts: 
c, critical value; 
1, imaginary part ; 
m, properties evaluated at the mid-depth 

of the liquid layer ; 
w, properties evaluated at wall. 

I. INTRODUCTION 

THE ONSET of the buoyancy-driven convection in a 
shallow pool of liquid steadily heated from below 
has been successfully predicted by use of linear 
theory [l]. The possible flows corresponding to the 
neutrally stable state in a liquid layer of unbounded 
horizontal extent form an infinitely degenerate set 
according to linear theory. The degeneracy can be 
eliminated by taking into account the nonlinear 
effects [2-81 or the anisotropy imposed by particular 
boundary geometries [S, 9-121 and the primary 
flows [13-181. The theoretical predictions are 
generally in good agreement with experimental obser- 
vations, and thus our understanding of the 
buoyancy-driven instability is relatively complete. 

The study in the surface-tension-driven instability 
of a thin liquid layer is less extensive. Block [19], 
Pearson [20] and Sternling and Striven [21] 
demonstrated that the surface tension gradient may 
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FIG. 1. Surface micrograph of a photographic film exhlbltmg surface tension drlren mstabllity. Each curve in the figure is 
obtained from tracing the elevation of a photographic film along a given horizontal line. The magnification factor for the 

elevation is 2000 and that for the horizontal distance IS 50. 

cause the ,instability. In Pearson’s original analysis, 

the free surface was assumed to be extendable but 
inflexible. He invoked Newton’s law of heat transfer 
at the interface and predicted the onset of stationary 
circulation in a horizontal liquid pool at finite 
critical flow parameters. Striven and’ Sternling 1221 
extended Pearson’s analysis to allow the deformation 
of a free surface. In ignoring gravity waves. they 

obtained results which suggested that the pool was 
always unstable to disturbances of very large 
wavelength. It was, this peculiar prediction concern- 

ing, long wavelength disturbances that motivated 
Smith’s [23] analysis in which gravity waves were 
included. By use of Pearson’s free surface boundary 
condition, Nield [24] demonstrated that the surface 
tension gradient and buoyancy can enhance each 
other in causing instability. However, all these 

analyses do not predict the onset of circulation in a 
film cooled from the b&tom observed by Block. 

Smith’s numerical computations suggested that 
the cellular circulation may occur in a two-layered 
film cooled from the bottom. Smith’s analysis was 
extended by Zeren and Reynolds [25] who included 
the effect of buoyancy. Their theoretical predictions 
do not compare well with experiments. The disagree- 
ment between theories and experiments is susuallq 
attributed to the presence of surfactants which are 
extremely difficult to remove. The stabilizing effect of 
surfactants has been shown by Berg and Acrivos 
[26] and Berg, Boudart and Acr~vos [27]. Nield’s 

prediction for the onset of circulation in a liquid 

pool heated from below enjoys exceptionally good 
agreement with the careful experiments of Palmer 
and Berg [28]. Despite its inability to predict 
instability in a film cooled from below, the 
Pearson-Nield model seems to be adequate for the 

case of a film heated from below. The linear theory 
again predicts an infinitely degenerate set of possible 
flows subsequent to the onset of surface-tension- 

driven instability. The discussions on the post 
instability flow structures for this case are relatively 
few in comparison with the case of buoyancy-driven 
instability. Scanlon and Segel [29] have shown that 
nonlinears effects in surface tension induced in- 
stability promotes the formation of hexagonal cells. 
Gumerman and Homsy [30] have indicated that the 
instability in concurrent two phase flow can take 
three possible forms: streamwise oriented roll vor- 
t Ices. long interfacial waves, and short 
Tollmein-Schlichting waves. 

In this work, the onset of the surface tension 
gradient driven stationary circulation in a thin film 
flow down a heated inclined plane is studied by use 
of linear theory. The flow structure corresponding to 
the marginally stable state is examined. The con- 
dition under which the principle of exchange of 
stability is valid is investigated. The main results 
obtained in the subsequent analysis are summarized 
in the Abstract. 

The problem considered in this study is of great 



Surface tension driven instability of a liquid film flow down a heated incline 1519 

importance in modern precision coating technology. 
Figure 1 shows a surface micrograph of a photo- 
graphic film which exhibits a regular surface pattern 
created by the surface tension driven instability. 

FIG. 2. Definitron sketch. 

2. STABILITY ANALYSIS AND RESULTS 

Consider the stability of a liquid film flowing 
steadily down a heated incline as shown in Fig. 2. 
The steady fields of temperature 7: density p, 
pressure P, and velocity V which satisfies the 
equations of Navier-Stokes, energy, continuity, 
linear state relation between density and temperature, 
and the constant wall temperature boundary con- 
ditions are 

T(y) = T,-AT(l-2y), y = Y/d, 

P(y) = p,[l +yAT(l-ZY)], AT= T,--T,, 

P(y) = P,+p,gdcos@y[l +yAT(l -y)], 

O(y) = (gd2/v,)sin@.[(1 -y2)/2 

+yAT(l-3y2 +2y3)/61, (1) 

where upper bars refer to the basic fields the stability 
of which is being considered, the subscript m denotes 
that the subscripted variables are to be evaluated at 
the mid-depth of the film, Cp is the angle of 
inclination of the bottom wall, V is the fluid velocity, 
Y is the normal distance measured from the 
unperturbed free surface into the film, d is the film 
thickness, T, is the wall temperature, g is the 
gravitational acceleration, P, is the ambient pressure, 
and y is the thermal expansion coefficient. Note that 
the heat flux across each unit length of the film 
described by (1) is constant. To study the stability of 
the basic flow given in (l), we introduce the 
following perturbation quantities 

T=T+7”, P=p+-p’, P=P+P’, 

v = (O+ U’, V, IV) 

into the equations of mass, energy, state and 
momentum. Then using d, d2/k-,, Ic Jd, p&~/d2 and 
AT as scaling quantities for length, time, velocity, 
pressure and temperature respectively, we have, after 
some manipulation, the following dimensionless 
governing equations of linear stability 

L,(V2u)+v,D2ii, = PrRa(cos~.V:0-sincD.0,,) 

(2) 

L,O = 2v (3) 

V:p = -L,v,-v,D~,--PrRasin@@, (4) 

L1 (u, - w,)- v,Do, = PrRa sin @O, 

u,+uy+w, = 0 

(5) 

(6) 

0, = sin @[Pe( 1 - y2)/2 + Ra( 1 - 3y2 + 2y3)/6], 

where K, is the thermometric conductivity, V2 
the Laplacian, (u, v, w) = (V, v’, w)/(fc,,,/d), (x, y, z) 
= (X, xX)/d, 0 = T’/AT D = d/dy, V: = V2-D2, 
Pe = gd3/v,ic, = P&cl&t number, Pr = v&i, 
= Prandtl number, Ra = gd3yAT/v,rc, = Rayleigh 
number, L, = PrV’-a,-ii,a,, L2 = V-a,- 
U,a,, and the subscripts, x, y, z denote partial 
differentiations. In arriving at the above equations 
nonlinear terms in perturbations are neglected, 
Boussinesq approximation [l] is invoked, some of 
the pressure terms are eliminated by cross differen- 
tiations [ 1, 171. 

It is observed that the stability conditions vary 
even for a given wall temperature under the same 
flow parameters depending on if the wall is a good 
conductor or a poor conductor. To understand the 
effect of wall conductivity on the instability, we study 
the two limiting cases of a perfect conductor and an 
insulator. When the film becomes unstable, the 
temperature perturbation is quickly ironed out along 
the plate if the conductivity of the wall is much 
higher than that of the liquid film. In the limiting 
case of a perfect conductor, the temperature per- 
turbation along the wall vanishes, i.e. at y = 1. 
0 =0 for a perfect conductor (isothermal case). In the 
other case of an extremely poor conductor, the 
temperature perturbation in the film hardly has 
enough time to alter the base flow heat flux at the 
wall at the onset of instability because of its 
extremely poor conductivity. Thus, we have at y = 1 

0, = 0 for an extremely poor conductor 
(constant heat flux case).? 

The kinematic boundary condition at y = 1 is 

v = vy = 0. 

The boundary conditions at the free surface y = tf 
can be expanded about y = 0 by use of the Taylor 
series expansions. Retaining only the linear terms in 
perturbations, we have: 

kinematic condition, 

v = 4% + LJ,rlX, 

tangential force balance 

(V::-D2)v+~,D2~*-MV;(O+2~)=0, 

normal forces balance 

P = PrCVfq+2 Prv,-PrPe(1 +yAT)r7cos@, (7) 

heat flux balance 

DO = Bi(O +2r7), 

tProfessor W. J. Minkowya has pointed out that while 
this condition may he adequate for linear stability analysis 
of an extreme limiting case, it is hard to realize in 
experiments. 
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where M, C, and Bi are respectively the Marangoni, 
Crispation, and Biot numbers defined as: 

M = - (&S)(AT/p,K,), C = Sdjp,,,~,,,, Bi = qdjk,, 

S and q being respectively the surface tension and the 
heat-transfer coefficient. The pressure in the above 
equation is given by (4) in terms of II and 0. The 
derivation of the free surface boundary conditions 
are given in the Appendix. 

Note that v, 0 and q are decoupled in the above 
differential system. Therefore only (2) and (3) need to 
be solved with the above boundary conditions in the 
stability analysis. If more detail of the perturbed flow 
field is desired, p, u and w can be obtained from 
(4)-(6) after v and 0 are determined. 

The normal mode solution to the above for- 
mulated eigenvalue problem is sought in the form 

[v,@,PJ] = [~(y),e(~),rrCy),rlexp[i(crx+Bz+ar)l, 

where a and j are the numbers of waves over a 
distance 2nd in the x and y directions respectively, 
and R is the wave frequency. Substituting this form 
into (2), (3) and their boundary conditions, we have 
the governing differential equations 

[Pr(D’--a’)-i(SZ+aii,)](DZ-a2)t,b+iaD20, 

= PrRa 

(a28 cos@ + ia sin@ De) 

(D2-a2)0-i(L!+aii,)fl = 21,b 

and the boundary conditions 

$=D$=O, 
0=OorDB=Oaty=l, 

and 

J/ = i(Q+aO,)< 

(D’i-a’)+-a2M(8+2t)-iaD20,r = 0, 

Pr(D’-3a2)DJI+a2Pr[a2C+cosb(Pe+Ra)]~ 

Consider the case of small Q and small d such that 
sin@ = E << 1, Ra = 0 (t?). Expand the eignefunctions, 
the eigenvalue M and Q in powers of E 

The remaining flow parameters a, fi, Pr, Bi, C, Ra 
and Pe are considered independent parameters. 

Substituting the series solution into (8) and its 
boundary conditions and collecting terms of O(l), we 
have 

(D2-a2)2$O-(iQ,/Pr)(D2-a2)1(10 = 0, (9) 

(D2-a2)Bo-i~o130 = 2*,, (10) 

and the boundary conditions tie = Di,bo = 0, B0 = 0 
orDB,=Oaty= l;andaty=O 

Go = iQotor 

(D2+a2)JIo-a2Mo(0,+2~,)=0, 

(D2 -3a2)DJ/o+a2(a2C+Pr)~o +i(Ro/Pr)DJlo = 0, 

DB, = Bi(B, +25,). (11) 

The above differential system can be readily reduced 
to a homogeneous system in only one dependent 
variable 0, by use oi (10) and thd last equation of 
(11). If the instability sets in as stationary cellular 
convection, the principle of exchange of stability 

(8) holds [31] and ZT = 0 on the neutral curve. The 
corresponding eigenfunction for both cases of con- 
stant wall temperature and constant heat flux can be 
written as 

B. = (A,+A,y+A,y’)cosh(ay) 

+(Bo+B,y+B2y2)sinh(ay), 

where 

A, = -[8a3(a2C+Pe)/(sc-a)]A,, 

+i[aD2ii,J/-(Sl+aO,)D$+qPrRaSinW] = 0, A, = [(s2+2a2)/a(sc-a)]A2, 

DO = Bi(0+25) at y =0, B, = [4Bi/aM,+ (s2 -2a2)/a2(sc-a)]A,, 

where a = (a2 +j2)‘j2. B, = -A,/a, B2 = -[s2/(sc-a)]A,, 
c = cosh(ay), s = sinh(ay). 

Note that the eigenfunction is here determined only up to an arbitrary multiplication factor as is expected for 
a linear homogeneous system. We now normalize the eigenfunction with the coefficient of y’cosh (ay). Thus 
we put A2 = 1 and set the coefficients of y2cosh (ay) in the higher order solutions to zero. Note also that the 
above coefficients are determined without invoking the thermal boundary conditions at the rigid wall. 
Invoking this condition we have the eigenvalue on the neutral curve 

4a(sinhacosha-a)(Bisinha+awsha) 

Mo = (sinh3a- a3 cosha)+8a5 cosha/(a2C +Pe) 

for the case of constant wall temperature, and 

MO= 
4a(sinhacosha-a)(Bicosha+asinha) 

cosha(a2 +sinh’a)-asinha(az+2)+8a5 sinha/(a’C+Pe) 

for the case of constant wall heat flux. 
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3(a). Constant wall temperature case. 
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FIG. 3. Neutral stability curves. The regions on the left and the right of each curve are respectively the region of stability 
and instability. The set of curves for which Bi = 0 is denoted by I. The set of curves for which Bi = 10 is denoted by II. The 
letters A, B, C, D and E stand respectively for the values of the Crispation numbers 10 * 106, 104, lo3 and 102. The numbers , 

1,2,3,4 and 5 on the curves designate respectively the values of the Weber numbers 102, I, lo-*, lo-* and 10e6. 

Table 1. Asymptotic behavior of M, for zero wave number 

Finite C: 
Finite C, We = 0: 
C+cC: 

Constant temperature Constant heat flux 
case 

Bi=O case Bi # 0 

C. We( 1 + Bi)/3 24/[ I +72/C. We] 
0 0 B;3 
03 24 al 

The above results differ from those of Striven and and the critical wave number for a large range of 
Stemling [22], if their surface viscosity is neglected, other relevant parameters as is illustrated in Fig. 3 and 
only by the term Pe which arises from the stabilizing Table 1. Note also that Pearson’s results for the case of 
effect of gravity at the free surface neglected by them. an inflexible free surface are recovered in the limit of 
The inclusion of this term has a profound effect of C + co when the surface tension is infinite. 
rendering non trivial the critical Marangoni number Similarly for the O(E) we have the governing 



I522 S. SREENIVASAN and S. P. LIN 

differential equation at the marginal state where 

(DZ-a2)381 = i&$,(1 + 1/Pr)(D2-a2)‘8,+bPe. 

[(D2-a2)2(ht)o)-D2h(D2-a2)80 

+ (h/Pr)(D2 - f?)%,]. 

Q, = 4A~/M~-~2A~+4a3S~~ 

+ 24(c,, + aSA,) 

The boundary conditions at 1’ = 1 are 

8, =o, 

Q2 = 2a~A,+u~(M~/Bif(C,,I_uS,,) 
-4u3S,,-&S,,. 

(IF--a%, = 0, 

f)(D2-Q')@, = iiz,,D&, 

for the case of constant wall temperature, and 

DB, = 0, 

In general, n,, #O and thus the principle of exchange 
of stability does not hold for nonvanishing @ even 
when it is valid for Cp = 0. Moreover, the correction 
to M due to angle of inclination Q, must be sought in 
higher order solution, since M, = 0. 

The governing equation for the O($) problem is 

(P-u2)8, = X&e,, 

~{D’-u’)e, = ~~~e~~~~, h = (i-9f/2 

for the case of constant wall heat flux. The boundary 
conditions at the free surface are 

(D2-d)B, = i~~~,+~Pe~)D~*~Bi 

(D2-aa2f382 = &&,(I + ~~~r)(D*-~*)e~ 
+ (fif,/Pr)[(D’ - Q2 )B, 
-fl+Pr)(D2-u2)2812] 
+(aQ,,Pe/Pr)[2h(D* -a2)6, 
+21)hf)80+~Zh(~2-Q2)~,2 
-h(D2-uZ)28,,-Pr(D’-u2)2(he,,) 
-(l +Pr)(D’-cr’)%,,J 
+ (aZPe2/Pr)[h2(D2 -n2)Bo 
+ 2hDhDf& - Pr(D2 -a* )2(h@,3 ) 
-k(D2-u2f2@,, 

+(~2/~~)(~2C+~e)(D~~-~i~~) 
=i(R,,+aPeh)[(D’-3a2)D8, 
$ (D2 - a*)DB,/Pr] 
+3ic(PeDZhDB,. 

The eigenfunction o1 can be written as 

B,(g) = in,,e,,(p)+icrPeB,,(r) 

B,j(_V) = i y”[C”jCosh (~~11 
n=o 

+S~,sinh(u~)], j = 2.3 

where 

C,, = (1 f 1/Pr)B2/6a, S,, =‘(l + 1/Pr)A2/6u, 

c,, = C,, = S4z = SQ = 0, 

The boundary conditions at _V = I are 

B, = 0, (P-u*)& = 0 

D(DZ- a2)8, =i~,pBo-a~~~,2-rxsz,pe~~,3 

for the case of constant wall temperature, and DfI, =O, 

(D2-a”)e,, = iR,,B,-nf,e,,-an,,PeS,,, 

D(D2 -a2)B2 = -ff~,,Pee,2D~-a2Pe2~~~D~, 

C,, = (3 + 1/Pr)A,/24a2 - B,/l2a 
+ [a2( 1 + l/B) - (3 +4/Pr)]B2/12a3, 

S,, = (I+ 1/Pr)(2a2-9)A,/24a3 -A,,‘12n, 

for the case of constant wall heat flux. The boundary 
conditions at y = 0 are 

C,, = (9f4/Pr)A,/48a2, 
S,, = (3+2/Pr)B,/24a2- A,/16a.. . 

Cs3 = - (6 -I- 1/Pr)B2/120a, 

SJ3 = -(6+ l/Pr)A,/lZOa. 

The remaining coefficients (C,j, C,,, Czj) and (S,j, 
SIj, Szj) belong to the complementary solution. C2, 
= 0 according to our eigenfunction normalization 
described earlier. The rest of the integration con- 
stants are determined from the inhomogeneous 
boundary conditions excluding that of the free 
surface tangential force balance. The explicit ex- 
pressions of the integration constants are lengthy but 
available [32], and therefore need not be given here. 
Substituting the eigenfunction thus obtained into the 
tangential force boundary condition, we obtain 
respectively from its real and imaginary parts 

(D4 -a4)B2 -2a2(M,/Bi)DB2 = 
2iR,,a2Bo+2a2M~DBojBi 

-R~,(Da+uZ)8,,-aTt,,Pe[(D2+uZ)B,, 
+~(D2+~2)~~~+D2~D~,2/B~] 
-a2Pe2[h(D2+a2)013+DZhD$lJ/Bi], 

(0’ -3aZ)(D2 -a2)D8, -+ (a2/Bi)(a2C+Pe)(DO), 
-Bi62) 

= iQ,,[(D’ - 3a*)D8, + (D2 -a2)DBo/Pr] 
+f$[DB,/Pr - (D’ - 3a2)DB,, -(D2 

-a’)DB,,/Pr] 
~a~*~~e~2~De~/Pr-[(D’-3~~)D~~~+~(~~ 

- 3a2)D8,,] 
-[(D2-u2)D81,+h(D2-a2)D612]/Pr 

-3D2ftDB,2} 
+ a2Pe2(hZD&J,JPr - h[(D’ - 3a2)DB, 3 + (0’ 

-a2)DB13/Pr 
M, =0 and R,, = orPe(Q1/Q2) (121 -3D2hD8,J) +a2Pe(D0,-B&)/B& 



Surface tension driven instability of a liquid film Bow down a heated incline 1523 

The 0(g2) eigenfunction can be written in the form 

8,(y) = iR2,& +Q&022+af21;Pe623 +u2Pe2024 

+& 

where 

Qzx = i ~~~coshfay)+g,l,sinh(uy)J. 
I=0 

The determination of ibe eigenfunction and the 
eigenvalue follows exactly the same procedure de- 
scribed in the O(E) probiem.f, and grk are lengthy 
expressions in terms of the flow parameters. Tfiey are 
available [32] and will not be given here, Sub- 
stitution of the eigenfunction into the tangential 
force boundary &dition gives 

Q2sP4 -a4)e2, -2a2 8,-2a2(M,/Bi)DB2,],=, = 0 

(13) 

JQf2 = a2 Pe2 F, (a, M,, Bi, C, Pr, We) 
- F2(a, M,, Bi, C, Pr, We), 

114) 

where HGe z Pe/C zs Weber number, and 

F, = H~(Q1/Q2)2+H2(Q,/Q2)+N3r 

H, = (M,/4)C(S,,+aC,,)Ia+2ag,, 
+12Vk2+ah2Ya21 

-W~/4Bi)(f,2+~~02) 

H2 = (Mo/4)C(S,,+aCe,)/a+(S,2+aC,2)/2a 
-C12+aS,2)/2a2Bi+2ag,3 

+ i2Vk,+ag33Ua2-(M~/4Bi)V;3 
+wo3f 

H3 = (~*/4)[(S~ 3 + a Co3 Y2a 

-(C,,+aS,,)/Za’Bi+Zag,, 

+ 12L f ag3, Ma21 

- (M$‘W~I~ + woo) 

F2 = [ Weu3/CMi( We -+ a2)2 + (sinh a cash a -a)] 

x [l +Bi(tanha)/a]. 

Thus, to O(E’) we have 

M = Mo+&2[a2Pe2F, -F,]. 

It is seen from the expression of F2 that F, is 
positive definite. Because of the complicated ex- 
pression of F,, we are not able to prove that F, is 
also positive definite. However, extensive numerical 
evaluation of F, shows that F, is positive around the 
critical Marangoni number M,, and the critical 
wave number a, if both of them are nontrivial. 
Typical numerical results are given in Tables 2,3 and 
4. It follows from the above expression of M that for 
given Bi, C, We, Pr, M is the minimum if CL = 0 for 
each value of a for which I;, >O. Thus onset of 
surface tension gradient driven instability sets in a 
film on a heated inclined plane as streamwise rolls 
over a tide range of flow parameters. These rolls are 
non-oscillatory to O(.G) accuracy, since il,, = 0 at a 
= 0 according to (12) and irZr = 0 according to (13) 

Table 2. Isothermal rigid surface 
Bi = 10, C = 106, We = 10W2, Pr = 10 

a MO F, F2 

0.01 3.6723(4)* 
0.10 2.7526(4) 
0.50 l&523(3) 
1.00 5.4074(2 ) 

-4.674(20) 1.803(4) 
2.586(3 j 
7.071(-2) 

- 1.737(1oj 
4.506163 
1.146(6j 
3.028(s) 
1.828(5) 
1.697(S) 
1.577(S) 
6.946(4) 
1.595(4) 
3.373(3) 
8.440(2) 

4.090~-4j 
3.939( -6) 
8.~~-7) 
6.422( -7) 
5.174(-7) 
5.731(-8) 
2.288( - 9) 
8.298(-11) 
2.638( - 12) 

200 
2.60 

2.3X6(2) 
2.074262) 
2.0678(2) 
2.0683(2) 
2.4397(21 
3.86tnj2 j 
5.7613(2) 
8.0000(2) 

2.70 
2.80 
4.00 
6.00 
8.00 

10.00 

Table 3. Constant heat flux rigid surface 
Bi = 10, C = 106, We = lo-‘, Pr = 10 

a MO F, F2 

0.01 
0.10 

2.3831(6) - .8.2811(22) 
2.4034(4) - .3.238(9) 

8.35lf3) 
2.15211) 
5.565( -3) 
1.1271-4) 

0.50 1.0805(3) 5.428(7 j 
1.00 3.6352f3) 1.316(71 
2.00 X9893(2 j 

1.9167(2) 
1.9166(2) 
1.9223(2) 
2.4101(2) 
3.8577(2) 
5.7612(2) 
S.OOM(Z) 

2.643is j 
1.562(6) 

2.733i-6j 
1.041(-7) 
8.375( -7) 
6.785( - 7) 
5.588( - 8) 
2.285( -9) 
8.298(-11) 
2.638( - 12) 

2.40 
2.50 1.374(6) 

1.210(61 
2.isiisj 
2.252(4) 
3.587(3) 
8.499(2) 

2.60 
4.00 
6.00 
8.00 

10.00 

Table 4. Isothermal case: results by orthogonality method 
Bi = 10-2, c = 104, u/e = 10-6, Pr = 1o-3 

a MO f;, F2 

0.1 -2.6165(3) 6,15161(O) 2.75057( - 3) 
0.5 -3.2893(2) -1.11021(-I) 8.48167( -4) 
1.0 1.2834(l) 3.39731(-3) 2.48237( - 5) 
2.0 3.1991(l) 7.50893( -3) 9.99198( - 7) 
2.6 3.8212(i) 7.%900( - 3) 3.79224( - 7) 
2.8 4.1007(l) 8.11228( -3) 2.97045( - 7) 
4.0 6.6421f11 

1.4177i2j 
8.160441-3) 

6.0 4.50281(-33 
1.09115(-7) 
4.46844{ - 8 j 

8.0 2.5318(2) 1.45119(-3) 2.50060( -8) 
10.0 3.9720(2) 4.33279( -4) 1.60001( -8) 

because the quantity in brackets in (13) is not 
identi~lly zero. Note that the rolls are more easily 
observable for the case of constant heat flux at high 
Biot numbers (cf. Table I). Note also that the critical 
Marangoni number of an inclined film is smaller 
than that of the corresponding horizontal film only 
by a small amount of O(tz’F,), since F, is positive 
definite. 

The numerical results given in this section agree 
with those obtained from the orthogonality con- 
dition of the present differential system with its 
adjoint system 1321. 

3. DISCUSSION 

It should be pointed out that F, is not positive, 
according to our numerical computation, when the 
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Prandtl number is extremely small or when the 
critical wave number is zero. For these cases the 
marginal state may not be the stationary convection 
rolls. The oscillatory mode may dominate the 
instability in a film of small Prandtl number [19, 211. 
and the neglected nonlinear effect may be dominat- 
ingly important when the wave number approaches 
zero. 

The analysis given in Section 2 was carried out for 

the case of sin@<< 1 and Ra = 0 (sin3@) but all other 
flow parameters need not be small. For this case, the 
forced convection acts as a higher order source term. 

because of the small velocity associated with the 
small CD. However, it can be seen from the expression 

of i?.+ that the convective term may still remain small 
even if CD is not small if Pe = EC 1 and Ra = 0(Pe3). 

Since Pe = gd’lv,,,q,,, the latter case corresponds to 
the creeping flow associated with large viscosity and 
small film thickness. The stability analysis for this 
case can be carried out in exactly the same manner 

as that given in the previous section except the small 
parameter E of expansion is now Pe and @ must be 
treated as a free parameter. Such analysis is not yet 
available. It would be interesting to see whether the 
marginal state of the surface tension driven in- 
stability of a thin film on a heated incline is 
streamwise oriented or transverse rolls when the 
angle of inclination is near vertical. It is known that 
for the case of buoyancy-driven instability the 
neutral state is transverse rolls with their axis normal 

to the mean flow if @ IS near vertical [ 16, 17. 34,351. 
It should be pointed out that the present study is 

relevant only to a very thin film flow m which 

neither the gravity-capillary ripples nor the 

buoyancy-driven convection is the dominating mode 

of instability. The effects of surface tension variation 
on the ripple formation have been studied by 
Bankoff [36], Marschall and Lee [37] and Lin [38]. 

Quantitative experimental data for the present 
problem are not available to the authors. and 

comparisons between the theory and experiments 
cannot be made presently. 
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APPENDIX 1,” = 23, + iTs,p 

In derrvmg the conditions to be applied at the unknown 
perturbed free surface Y= B(X,Z, t), we neglect the shear 
and inertial forces in the ambient gas and also the 
nonlinear quantities in perturbations. 

Since the time rate of displacement m the Irdirection is 
by defimtron I”. we have the kinematic condition 

I” = DB:‘Dt. (Al) 

In order for each element of the free surface to have finite 
acceleratrons in the X and Z directions. we must have 

~,(V~+ar+U\,)+S, =0 and /~,(I~+Wyl)+SL=O. 
(A2) 

P,(V;,, + Kz- 1’,‘,+B,L’,,) 
+t%+Tk+T,@,,+B,)] =O, 

2~,li;+S(B,,+B,,)-p,gBcoscD(1 +pATt-p’ = 0, 

Note that the two equations in (A2) have been combined 
with the help of the continuity equation. 

The nondimensionalization of length, time, velocity, 
pressure, and temperature respectively by d. d’/ti,. timid, 
p,,,ti,$/d’ and AT then reduces the above conditions to (7) 
given in Section 2. 

INSTABILITE DUE A LA TENSION INTERFACIALE POUR UN 
FILM LIQUIDE COULAND LE LONG DUN PLAN INCLINE 

RCumP--On etudie par la thtorie linearre la cuculatton stationnarre, pilotee par la tension superficielle, 
dans un film mmce coulant sur un plan incline Dans le cas limite dun film liquide horizontal, la 
crrculation apparan a des nombres crtttques finis d’onde et de Marangoni pour une lare itendue des 
paramttres d’tcoulement si l’effet stabilisateur de la pesanteur, nkglige par les chercheurs, est pris en 
compte. SI (‘angle d’inclmarson 0 est tel que sm 0 << 1 et si le nombre de Rayleigh est de l’ordre de sin3 0, 
la structure d’ecoulement correspondant a l’etat de stabiliti neutre est celle de tourbillons orient&s dans le 
sens de I’icoulement. Le nombre critique de Marangom du film sur le plan incline est plus petit que celui 

du film horizontal d’une valeur sm2 OF, ou F depend des parametres typtques de I’tcoulement. 

DURCH OBERFL~CH~NSPANNUNG ERZEUGTE INSTABIL~~T EINES 
AN EINER BEHEIZTEN, GENEIGTEN FLACHE HERABSTROMENDEN 

FLUSSIGKEITSFILMS 

Zusammenfassung-Mit emer hnearen Theorie wtrd das Einsetzen der durch dte Oberllachenspannung 
erzeugten station&en Zirkulationsstr~mung emes dunnen Films unter sucht, der an einer beheizten, 
geneigten Flache herabstromt. Im Grenzfalf eines horizontalen Fhissigkeitsfilms beginnt das Einsetzen 
der Zirkulationsstriimung bei endlichen kritischen Wellenzahlen und Marangoni-Zahlen fur einen 
grol3en Bereich wichtiger Strdmungsparameter, wenn die stabihsierende Wukung der Schwerkraft, welche 
bei friiheren Autoren vernachlassigt wurde. beriicksichttgt wird. Wenn der Neigungswinkel #J der Fllche so 
klein 1st. da0 sin t#~ << 1 und wenn die RayleighhZahl von der Gr~~nordnung sin jr$ ist, dann hat die dem 
neutral stabilen Zustand entsprechende Strijmung die Struktur von in Strdmungsrichtung orientierten 
Wirbeln. Die krrtische Marangoni-Zahl des Films an einer beheizten, geneigten FILhe ist urn smz4F 
klemer als die des entsprechenden horizontalen Films, wobei F von wichtigen Stromungsparametern 

abhangt. 
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HEYCTOtiqMBOCTb TEYEHWI WlAKOti WlrHKM HA HAI-PETOti HAKJlOHHOti 
llOBEPXHOCTM, BbI3BAHHAfl CMJlAMM ilOBEPXHOCTHOl-0 HATII’HCEHMII 

AHHOTaUH%I - c nOMOubm JIHHefiHOh TeOpHH HCCJIWyeTCA 803HWKHOBeHWe yCTOhHBOr0 UI+pKy- 

J,RUHOHHOrO TVieHWR. Bbl3,BaHHOrO CHJlaMll nOBepXHOCTHOr0 HBTSDKCHHR, IlpLl CTeKaHHW TOHKOfi 

n,,eHKW ‘,O HaK,,OHHOit Hat’peTOti nOBepXHOCTt4. HaAneHO, VT0 B npWWlbHOM CJly’liE TOpH3OHTaJlbHOti 

W,L,KOti IlJleHKW Uk4pKyJlRUL4OHH0‘2 TeWHHe MOWZT Ha6JHOnaTbCR IlpH KOHC’iHbIX Kp,,TH’,eCKHX 

BO,,HOBblX SHCJlaX H ‘ictCJKiX hkipaHrOHIl B UIl4pOKOM IIWalla30He COOTBeTCTByKNlUlX IlapaMeTpOB 

T’.YCHHR, eCJlw yWlTblBaeTC5l cTa6nnmnpytome BJIHRHW rpaBHTZlUHH, KOTOpaR npeHe6peranaCb 

npenblnylukiMH nccnen0aaTennr.m. IJpn Manblx yrnax HaKnoHa (sin fj Q I) H rwcnax Penefl nopnnxa 
Sin3 r$ CTpyKTypa nOTOK& COOTBeTCTBytOlUaR HeZiTpanbHO yCTOi+lWBOMy COCTORHWKI, n~LlCTaBJlflt?T 

co608 Op,,eHTHpOBaHHblenOlTOTOKy BHXpkl.3HPleHt4e KpWTH’ieCKOrO ‘4HCJla MapaHrOHH LIJIR IlneHKW 

Ha HWpeTOk HaKnOHHOfi nOBepXHOCTH MeHbWe JHB’ieHWR LlJlfl rOpH30HTWlbHO8 IlJleHKW Ha BeJlHWHy 

Sid #& i-D2 F RBJlReTCIl (PyHKUMeh COOTBeTCTBytOUlriX napaMeTpOB TeWHHR. 


