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Abstract—The onset of surface tension driven stationary circulation in a thin film flow down a heated
incline is studied by use of linear theory. In the limiting case of a horizontal liquid film, the onset of
circulation takes place at finite critical wave numbers and Marangom numbers for a large range of
relevant flow parameters if the stabilizing effect of gravity neglected by previous workers is taken into
account. If the angle of inclination @ of the incline is so small that sin ® « 1 and if the Rayleigh number is
of order sin® ®, then the flow structure corresponding to the neutrally stable state is that of stream-wise
oriented vorticies. The critical Marangoni number of the film on a heated incline is smaller than that of
the corresponding horizontal film by an amount sin? ®F where F depends on relevant flow parameters.

NOMENCLATURE
C,, heat capacity;
d, film thickness;
h, (1-y*)2;
k, thermal conductivity;
P dimensionless pressure = P/{p,x2/d?);
Pr,  Prandtl number = v, /x,,;
q, heat-transfer coefficient ;
S, surface tension;
t, time;
T, temperature;
U, velocity component in X direction;

U, V', W, perturbation velocity components
in X, Y, Z directions;
u, v, w, dimensionless perturbation velocity
components = (U'V'W')/(k,/d);
dimensionless steady state velocity,
in x-direction;
velocity vector;
X,Y,Z, dimensional cartesian coordinates;
x, y,z, dimensionless cartesian
coordinates = X/d, Y/d, Z/d.

U,,
v,

Greek symbols
7, isobaric thermal expansion
coefficient = — (1/p)(¢p/CT),;
AT, atemperature difference in the
liquid = T,,—T,,;

7, dimensionless free surface deflexion = B/d;

0, dimensionless temperature
perturbation = T'/AT;

K, thermometric conductivity ;

U, dynamic viscosity ;

v, kinematic viscosity ;

FeX density ;

T, dimensionless time = t(d?/x,,);

P, angle of inclination of the film to
the horizontal;

Q, frequency of the disturbance.

Dimensionless groups
C. Crispation number = Sd/u,,x,,,;
Pe,  Péclét number = gd>/v,x,, = WeC;
M,  Marangoni number = —S;AT/pu, kK,
Bi,  Biot number = gqd/k,,;
Ra, Rayleigh number = gd*yAT /v, x,,
= PeyAT,
We, Weber number = p,gd*/S.

Superscripts
-, steady state quantities;
', disturbance quantities.

Subscripts:
¢ critical value;
i, imaginary part;
m, properties evaluated at the mid-depth
of the liquid layer
w, properties evaluated at wall.

1. INTRODUCTION

THE oNSseT of the buoyancy-driven convection in a
shallow pool of liquid steadily heated from below
has been successfully predicted by use of linear
theory [1]. The possible flows corresponding to the
neutrally stable state in a liquid layer of unbounded
horizontal extent form an infinitely degenerate set
according to linear theory. The degeneracy can be
eliminated by taking into account the nonlinear
effects [2-8] or the anisotropy imposed by particular
boundary geometries [5, 9-12] and the primary
flows [13-18]. The theoretical predictions are
generally in good agreement with experimental obser-
vations, and thus our understanding of the
buoyancy-driven instability is relatively complete.
The study in the surface-tension-driven instability
of a thin liquid layer is less extensive. Block [19],
Pearson [20] and Sternling and Scriven [21]
demonstrated that the surface tension gradient may
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FiG. 1. Surface micrograph of a photographic film exhibiting surface tension driven mstabulity. Each curve in the figure is
obtained from tracing the elevation of a photographic film along a given horizontal line. The magnification factor for the
elevation is 2000 and that for the horizontal distance 1s 50.

cause the instability. In Pearson's original analysis,
the free surface was assumed to be extendable but
inflexible. He invoked Newton’s law of heat transfer
at the interface and predicted the onset of stationary
circulation in a horizontal liquid pool at finite
critical flow parameters. Scriven and Sternling [22
extended Pearson’s analysis to allow the deformation
of a free surface. In ignoring gravity waves, they
obtained results which suggested that the pool was
always unstable to disturbances of very large
wavelength. It was this peculiar prediction concern-
ing: long wavelength disturbances that motivated
Smith’s [23] analysis in which gravity waves were
included. By use of Pearson’s free surface boundary
condition, Nield [24] demonstrated that the surface
tension gradient and buoyancy can enhance each
other in causing instability. However, all these
analyses do not predict the onset of circulation in a
film cooled from the bottom observed by Block.
Smith’s numerical computations suggested that
the cellular circulation may occur in a two-layered
film cooled from the bottom. Smith’s analysis was
extended by Zeren and Reynolds [25] who included
the effect of buoyancy. Their theoretical predictions
do not compare well with experiments. The disagree-
ment between theories and experiments is susually
attributed to the presence of surfactants which are
extremely difficult to remove. The stabilizing effect of
surfactants has been shown by Berg and Acrivos
[26] and Berg, Boudart and Acrivos [27]. Nield's

prediction for the onset of circulation in a liquid
pool heated from below enjoys exceptionally good
agreement with the careful experiments of Palmer
and Berg [28]. Despite its inability to predict
instability in a film cooled from below, the
Pearson—Nield model seems to be adequate for the
case of a film heated from below. The linear theory
again predicts an infinitely degenerate set of possible
flows subsequent to the onset of surface-tension-
driven instability. The discussions on the post
instability flow structures for this case are relatively
few in comparison with the case of buoyancy-driven
instability. Scanion and Segel [29] have shown that
nonlinears effects in surface tension induced in-
stability promotes the formation of hexagonal cells.
Gumerman and Homsy [30] have indicated that the
instability in concurrent two phase flow can take
three possible forms: streamwise oriented roll vor-
tices, long interfacial waves, and short
Tollmein~Schlichting waves.

In this work, the onset of the surface tension
gradient driven stationary circulation in a thin film
flow down a heated inclined plane is studied by use
of linear theory. The flow structure corresponding to
the marginally stable state is examined. The con-
dition under which the principle of exchange of
stability is valid is investigated. The main results
obtained in the subsequent analysis are summarized
in the Abstract.

The problem considered in this study is of great
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importance in modern precision coating technology.
Figure 1 shows a surface micrograph of a photo-
graphic film which exhibits a regular surface pattern
created by the surface tension driven instability.

F1G. 2. Definition sketch.

2. STABILITY ANALYSIS AND RESULTS

Consider the stability of a liquid film flowing
steadily down a heated incline as shown in Fig. 2.
The steady fields of temperature T, density p,
pressure P, and velocity V which satisfies the
equations of Navier-Stokes, energy, continuity,
linear state relation between density and temperature,
and the constant wall temperature boundary con-
ditions are

Ty)=T,—AT(1-2y), y=17Y/d,
oY) = pul 1 +9AT(1-2y)], AT=T,~T,
P(y) = P+ pngdcos®@- y[1+yAT(1 - y)],

U(y) = (gd*/v,,)sin®@ [(1—y*)/2
+9AT(1-3y? +2y%)/6], (1)

where upper bars refer to the basic fields the stability
of which is being considered, the subscript m denotes
that the subscripted variables are to be evaluated at
the mid-depth of the film, ® is the angle of
inclination of the bottom wall, V is the fluid velocity,
Y is the normal distance measured from the
unperturbed free surface into the film, d is the film
thickness, T, is the wall temperature, g is the
gravitational acceleration, P, is the ambient pressure,
and y is the thermal expansion coefficient. Note that
the heat flux across each unit length of the film
described by (1) is constant. To study the stability of
the basic flow given in (1), we introduce the
following perturbation quantities

T= T+Tla P=ﬁ+l"a
V=(O0+U,V, W)

P=P+P,

into the equations of mass, energy, state and
momentum. Then using d, d*/k,,, x,/d, pmx%/d* and
AT as scaling quantities for length, time, velocity,
pressure and temperature respectively, we have, after
some manipulation, the following dimensionless
governing equations of linear stability
L,(V*)+v,D*U, = PrRa(cos ® Vi@ —sin®- O, )
(03]
L,®=2 3)

Vip= —Lv,~v,DU,~PrRasin®®,  (4)

1519
L,(u,~w,)—0v,DU_ = PrRasin ®0©, (5)
u,+v,+w, =0 (6)

U, = sin®[Pe(l —y?)/2+ Ra(l —3y* +2y°)/6],
where &, is the thermometric conductivity, V2
the Laplacian, (u,v,w) = (U, V', W')/(Kk/d), (x,y,2)
= (X,Y,X)/d, ® = T'/AT, D =d/dy, V} =V?-D?
Pe = gd®/v,x, = Péclét number, Pr = v,/k,
= Prandtl number, Ra = gd*yAT/v,x,, = Rayleigh
number, L,=Prv?-9,-U,0,, L,=V?*-0,—
U,d,, and the subscripts, x, y, z denote partial
differentiations. In arriving at the above equations
nonlinear terms in perturbations are neglected,
Boussinesq approximation [1] is invoked, some of
the pressure terms are eliminated by cross differen-
tiations [ 1, 17].

It is observed that the stability conditions vary
even for a given wall temperature under the same
flow parameters depending on if the wall is a good
conductor or a poor conductor. To understand the
effect of wall conductivity on the instability, we study
the two limiting cases of a perfect conductor and an
insulator. When the film becomes unstable, the
temperature perturbation is quickly ironed out along
the plate if the conductivity of the wall is much
higher than that of the liquid film. In the limiting
case of a perfect conductor, the temperature per-
turbation along the wall vanishes, ie. at y=1.
© =0 for a perfect conductor (isothermal case). In the
other case of an extremely poor conductor, the
temperature perturbation in the film hardly has
enough time to alter the base flow heat flux at the
wall at the onset of instability because of its
extremely poor conductivity. Thus, we have at y = 1

©, = 0 for an extremely poor conductor
(constant heat flux case).t

The kinematic boundary condition at y = 1 is
v=uv,=0.

The boundary conditions at the free surface y = »
can be expanded about y = 0 by use of the Taylor
series expansions. Retaining only the linear terms in
perturbations, we have:

kinematic condition,
v=n.+Uun,

tangential force balance
(VZ—D*)o+n,D*U,—MV(@©+2n) =0,
normal forces balance
p = PrCVin+2Prv,—PrPe(1+yAT)ncos®, (7)

heat flux balance
DO = Bi(© +2n),

tProfessor W. J. Minkowycz has pointed out that while
this condition may be adequate for linear stability analysis
of an extreme limiting case, it is hard to realize in
experiments.



1520

where M, C, and Bi are respectively the Marangoni,
Crispation, and Biot numbers defined as:

M= —(0:8)AT/uk,,), C = Sd/p, k., Bi = qd/k,,

S and g being respectively the surface tension and the
heat-transfer coefficient. The pressure in the above
equation is given by (4) in terms of v and ©. The
derivation of the free surface boundary conditions
are given in the Appendix.

Note that v, @ and 5 are decoupled in the above
differential system. Therefore only (2) and (3) need to
be solved with the above boundary conditions in the
stability analysis. If more detail of the perturbed flow
field is desired, p, u and w can be obtained from
(4)-(6) after v and © are determined.

The normal mode solution to the above for-
mulated eigenvalue problem is sought in the form

[»,0©,p,n] = [¥(»),00»), n(y), £ exp [i (ax + Bz +Q1)],

where a and S are the numbers of waves over a
distance 2nd in the x and y directions respectively,
and Q is the wave frequency. Substituting this form
into (2), (3) and their boundary conditions, we have
the governing differential equations

[Pr(D*—-a?)—i (Q+al, )] (D*—a*W +iaD*U,
= PrRa
{(a%0 cos® + i sin® D)
(Dz—-a2)9—i(Q+aU,)9 =2 ®)

and the boundary conditions

l/l=Dl/l=0,
8=0o0rD8=0aty=1,

and
¥ =iQ+al)
(DZ +a2)‘l,_a2M(0+25)—iGDZU*6 =0,

Pr(D?>—3a?)Dy +a* Pr[a*C + cos®(Pe+ Ra))¢
+i[eD?U ¢ — (Q+aU,)Dy +a Pr RaSin®6] = 0,

DO = Bi(f+2£) at
a=(a>+p*)"2

y=0’

where

S. SREENIVASAN and S. P. LiN

Consider the case of small ® and small d such that
sin® = g« 1, Ra = O(e*). Expand the eignefunctions,
the eigenvalue M and Q in powers of ¢

(lll’ ®a é, Qa M) = z Sk['l’h(.}’), Gk(Y), éks Qk! Mk]

k=0

The remaining flow parameters o, 8, Pr, Bi, C, Ra
and Pe are considered independent parameters.
Substituting the series solution into (8) and its
boundary conditions and collecting terms of O(1), we
have
(D* =@ Vo — (IQ/Pr)D* ~a* Wy =0,  (9)

(D*—a*)0,— 82000 = 2, (10)

and the boundary conditions y, = Dy, =0, 8, =0
orD8,=0aty=1;andaty=0

Yo = i<,
(D*+a*)ro—a* Mo(0,+2¢,) =0,

(D*—3a)Dy+a*(@*C+ Pr)é, +i(Qo/PriDy, = 0,

DO, = Bi(0,+2¢&,). (11)
The above differential system can be readily reduced
to a homogeneous system in only one dependent
variable 0, by use of (10) and the last equation of
(11). If the instability sets in as stationary cellular
convection, the principle of exchange of stability
holds [31] and Q =0 on the neutral curve. The
corresponding eigenfunction for both cases of con-

stant wall temperature and constant heat flux can be
written as

0o = (Ap+A, y+A, y*)cosh (ay)
+(Bo+ B,y + B,y*)sinh (ay),

where
Ay = —[8a3(a®C + Pe)/(sc—a)] A,,
A, = [(s*+2a%)/a(sc—a)] A,,
B, = [4BijaM + (s* —2a%)/a*(sc —a)]A,,

B, = —A,fa, B;= "[52/(30—0)]142,
¢ = cosh(ay), s=sinh(ay).

Note that the eigenfunction is here determined only up to an arbitrary multiplication factor as is expected for
a linear homogeneous system. We now normalize the eigenfunction with the coefficient of ycosh (ay). Thus
we put A, = 1 and set the coefficients of y?cosh (ay) in the higher order solutions to zero. Note also that the
above coefficients are determined without invoking the thermal boundary conditions at the rigid wall.
Invoking this condition we have the eigenvalue on the neutral curve

_ 4a(sinha cosha —a) (Bisinha +a cosha)
© ™ (sinh®a— a® cosha) + 84> cosha/(a*C + Pe)

for the case of constant wall temperature, and

Mo = 4a(sinha cosha—a) (Bicosha+ asinha)
%™ cosha(a? + sinh?a) — asinha(a® +2) + 8a° sinh a/(a*>C + Pe)

for the case of constant wall heat flux.
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3(b). Constant heat flux case.

FiG. 3. Neutral stability curves. The regions on the left and the nght of each curve are respectively the region of stability

and instability. The set of curves for which Bi = 0 is denoted by I. The set of curves for which Bi = 10 is denoted by II. The

letters A, B, C, D and E stand respectively for the values of the Crispation numbers 10%, 10°, 10%, 10° and 10. The numbers
1,2, 3,4 and 5 on the curves designate respectively the values of the Weber numbers 102, 1, 1072,107% and 1076,

Table 1. Asymptotic behavior of M, for zero wave number

Constant temperature Constant heat flux

case case

Bi=0 Bi#0
Finite C: C- We(l + Bi)/3 24/[1+72/C - We) )
Finite C, We = 0: 0 0 Bi/3
C—oc: © 24 ©

The above results differ from those of Scriven and and the critical wave number for a large range of

Sternling [22], if their surface viscosity is neglected,
only by the term Pe which arises from the stabilizing
effect of gravity at the free surface neglected by them.
The inclusion of this term has a profound effect of
rendering non trivial the critical Marangoni number

other relevant parameters as is illustrated in Fig. 3 and
Table 1. Note also that Pearson’s results for the case of
an inflexible free surface are recovered in the limit of
C — oo when the surface tension is infinite.

Similarly for the O(¢) we have the governing
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differential equation at the marginal state
(D*—a?)*8, = iQ,,(1 + 1/Pr)(D*—a*}*0, +iaPe.

[(D? - a*)(h8y) — D*h(D? —a®)d,
+ (h/Pri{D* — a?)20,].

The boundary conditions at y = 1 are

8, =0,

(D?—ah)f, =0,
D(D*—a*)8, = iQ,, DB,

for the case of constant wall temperature, and

D8, =0,

(D*—a)8, = iQ,,8,,
D(D?*—a*)8, = iaPeDhby, h=(1—y%)2

for the case of constant wall heat flux. The boundary

conditions at the free surface are
(D?—a¥)8, = i(Q,, +aPeh)Db,/Bi

(D* —a*)0, —2a*(My/Bi)DO, = 2a*(M /Bi)D8,
+2iQ,,a” + iaPe[ 2a*h0, + D*1hDB,/Bi],

(D*~3a*)(D*-a*)D0,
+ (a*/Bi}{a®C + Pe)(DO, — Bif;)
=i(Q;, +uPeh)[(D? —3a*)DO,
+(D*—a*)D8,/Pr]
+ 3io Pe D*h D8,

The eigenfunction &, can be written as

6,(y) = i, 0, (y) + i Pedy5(y)
5

0,9} = X y'[Cyycosh{ay)

n=0
+8,sinh{ay)], j=2.3
where
Csy = (1+1/Pr)B,/6a, S;;, = (1+1/Pr)d,/6a,

C42 = Csz = 84y = Ssz =0,

Css = (3+1/Pr)A,/24a* — B,/12a
+[a*(1+ 1/Pr)— (3 +4/Pr)]B, /124,

S35 = (1 +1/Pr)(2a> —9)4,/24a® — A,/12a,

Cu3 = (9+4/Pr)A,/484%,

843 = (3+2/Pr)B,/24a* — A,/16a...
Cs3 = —(6+1/Pr)B,/120a,

Ss3 = —{(6+1/Prj4,/120a.
The remaining coefficients (Cy;, Cy,. Cy;) and (S,
S15 S3;) belong to the complementary solution. C,
=0 according to our eigenfunction normalization
described earlier. The rest of the integration con-
stants are determined from the inhomogeneous
boundary conditions excluding that of the free
surface tangential force balance. The explicit ex-
pressions of the integration constants are lengthy but
available {32], and therefore need not be given here.
Substituting the eigenfunction thus obtained into the
tangential force boundary condition, we obtain
respectively from its real and imaginary parts

Ml=0 and Q“’-—“O(PE(Q;/Q;z)' (12)

S. SREENIVASAN and S. P. LiN

where

Q, =44,/My—a*4,+4a%S,,
+24(Cy3+aS,;)
—a*(Mo/Bi)(Cy3+aSys),

Q, = 2’ Ay +a* (Mo/Bi)(Cy, +aS,,)
—4a>S,, ~244S,,.

In general, Q,, # 0 and thus the principle of exchange
of stability does not hold for nonvanishing ® even
when it is valid for @ = 0. Moreover, the correction
to M due to angle of inclination ® must be sought in
higher order solution, since M, = 0.

The governing equation for the O(e?) problem is

(D*—~a?y8, = iQ,,(1 + 1/Pri{D*—a?) 8,
+(Q3,/Pr)[(D* —a?)0,
—{(1+Pr)(D*—a*)*6,,]

+ (2, Pe/PrY[2h{D* ~ a*)8,
+2DhDOy+ D*(D?—a%)f,,

- h(D? ~a*)20,, — Pr(D? __az)z(hgu)
—(14Pr)(D*—a*)*8,,]

+{@2Pe? Pri[h*{(D? - a®)8,
+2kDhDG, — Pr(D* — a? (18, ,)
~i{D?*—a?)8,,

+D*h(D?*~a*)B,,].

The boundary conditions at y = | are
6,=0, (D*—a?)f,=0
D(D?~a*)0, = iQ;,D0, — Q3D , o2, PeDO 5

for the case of constant wall temperature, and D8, =0,

(D*~a*)f;, = 105,00~ 1,0, ~uQ,,Pef) 5,

D(D*—a*)8, = —asd,,Pef,;Dh—a*Pe*d, , Dh,

for the case of constant wall heat flux. The boundary
conditions at y = 0 are

(D*—a?)8, = iQ,,D0,/Bi—Q3,D0, ,/Bi
—aQ),, Pe(D8,, + hDO, ,)/Bi — «*Pe*hDO ,/Bi,

(D* —a*)0, — 2a*(M,/Bi)D8, =
2iQ,,a%0, +2a*M,D0,/Bi
—0F,(D*+a%)0,,—aQ,, Pe[(D*+ )05
+(D?*+a*)8,,+D*hD8,,/Bi]
—oa?Pe*[W(D*+a?)8,; + D*hDE,,/Bi].

(D? —3a*)(D*—a*)D, + (a?/Bi)(a*C + Pe)(D8,
— Bif,)
= iQ,,[(D* — 3a*)D6, + (D? — a*)D,/ Pr]
+Q2,[DO,/Pr—(D*—3a*)D§,, — (D?

—a*)DB,,/Pr]

+aQy, Pe{2hD8o/Pr —[(D? — 3a%)D8, , + h(D?
~3a%)Df,,]

~[(D? = a?)D, 5 +h(D* —a?) D8, ,/Pr

+a?Pe*{h*D0y/Pr—h[(D? ~3a®)D8, s + (D?
"‘02)})913/})?
~3D%hDB,, 1} +a® Pe(DO, ~ Bif,)/Bi.
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The O(¢?) eigenfunction can be written in the form

0:(y) = iQ,,0,, +9Q1,0,, +0Qy, Pel,; +a* Pe?0,,
+0,5

where

8
Oy = Y y{fucoshiay)+g,sinh(ay)].

r=e
The determination of the eigenfunction and the
eigenvalue follows exactly the same procedure de-
scribed in the Ofg) problem. f,, and g, are lengthy
expressions in terms of the flow parameters. They are
available [32] and will not be given here. Sub-
stitution of the eigenfunction into the tangential
force boundary condition gives

Q,,[(D*~a*)8,, 24 0, —2a> (Mo/Bi)DO;,],-0 =0
(13)

M2 = azpezFl(a,MO,Bf,C,Pr, We)
_Fz(a,Mg,Bi,C,Pr, %)a
(14)

where We = Pe/C = Weber number, and
F= Hl(Ql/Qz)2+H2(Q1/Q2)+H3:

H, = (My/4)[(S,,+aCq,)/a+2ag,,
+12(f,, +ag32)/az]
'(M5/4Bi)(f12+agoz)

Hy = (Mo/A)[(Sy3+aCos)/a+ (S, +aCy,)/2a
—Cy,+aSy,)2a* Bi+2ag, 5
+12{f,3 +ags; )/ a* — (ME/4 Bi)f,;
+4agos)

Hy = (My/8)[(8,3+aCy3)2a
—{Cy3+aS43)/2a° Bi+2ag,,
+12(f44+ agsa )/QZ]

— (M}/Bi){f14+6404)

F, = [ Wea®/CMZ%(We +a?)* - (sinhacosha~a)]
x [1+ Bi(tanha)/a].
Thus, to O(s*) we have

M = My+&*[a?Pe’F, —F,].

It is seen from the expression of F, that F, is
positive definite. Because of the complicated ex-
pression of F,, we are not able to prove that F| is
also positive definite. However, extensive numerical
evaluation of F, shows that F, is positive around the
critical Marangoni number M, and the critical
wave number a, if both of them are nontrivial
Typical numerical results are given in Tables 2, 3 and
4. It follows from the above expression of M that for
given Bi, C, We, Pr, M is the minimum if « = 0 for
each value of a for which F;>0. Thus onset of
surface tension gradient driven instability sets in a
film on a heated inclined plane as streamwise rolls
over a wide range of flow parameters. These rolls are
non-oscillatory to O(e?) accuracy, since Q,, =0 at «
= 0 according to (12} and Q,, = 0 according to (13)
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Table 2. Isothermal rigid surface
Bi =10, C = 105 We = 1072, Pr = 10
a M, F, F,
0.01 3.6723(4) ~4.674(20) 1.803(4)
0.10 2.7526(4) ~1.737(10) 2.586(3)
0.50 1.8523(3) 4.506{6) 7071{-2)
1.00 54074(2) 1.146(6) 4.090(—4)
200 2.3166(2) 3.028(5) 3.939(—6)
260 2.0742(2) 1.828(5) 8.040(—7)
2.70 2.0678(2) 1.697(5) 6.422(-7)
2.80 2.0683(2) 1.577(5) 5.174(-7})
4.00 2.4397(2) 6.946(4) 5.731(—8)
6.00 3.8600(2) 1.595(4) 2.288(—9)
8.00 5.7613(2) 3.373(3) 8.298(—11)
10.00 8.0000(2) 8.440(2) 2.638(—12)
Table 3. Constant heat flux rigid surface
Bi=10,C = 10%, We = 1072, Pr = 10
a M, Fy F,
0.01 2.3831(6) -8.2811(22} 8.351(3)
0.10 2.4034(4) —-3.238(9) 2.152(1)
0.50 1.0805(3) 5.428(7) 5.565(—3)
1.00 3.6352(3) 1.316(7) 1.127(—4)
2.00 1.9893(2) 2.643(6) 2.733(—6)
240 19167(2) 1.562(6) 1.041(=7)
2.50 1.9166(2) 1.374(6) 8.375(-7)
260 1.9223(2) 1.210(6) 6.785(~7)
400  24101(2) 2.151(5) 5.588(~8)
6.00 3.8577(2) 2.252(4) 2.285(-9)
8.00 5.7612(2) 3.587(3) 8.298(—11)
1000 8.0000(2) 8.499(2) 2.638(—12)

Table 4. Isothermal case: results by orthogonality method
Bi=10"%C=10% We=10"% Pr=10"?

a M, F, F,
0.1  —261653)  6.15161(0) 2.75057(—3)
0.5  —32893(2) —111021(—1)  848167(—4)
10 12834(1)  3.39731(—3)  2.48237(-5)
20 3.1991(1)  7.50893(~3)  9.99198(—7)
26 38212(1)  7.96900(—3)  3.79224(—7)
28 41007(1)  8.11228(-3)  297045(—7)
40 6.6421(1)  8.16044(—3)  1.09115(—7)
6.0 14177(2)  4.50281(—3)  4.46844(—8)
8.0 2.5318(2)  1.45119(—3)  2.50060(—8)

100 39720(2)  4.33279(—4)  1.60001(—8)

because the quantity in brackets in (13) is not
identically zero. Note that the rolls are more easily
observable for the case of constant heat flux at high
Biot numbers {cf. Table 1). Note also that the critical
Marangoni number of an inclined film is smaller
than that of the corresponding horizontal film only
by a small amount of O(¢*F,), since F, is positive
definite.

The numerical results given in this section agree
with those obtained from the orthogonality con-
dition of the present differential system with its
adjoint system [32].

3. DISCUSSION

It should be pointed out that F; is not positive,
according to our numerical computation, when the
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Prandtl number is extremely small or when the
critical wave number is zero. For these cases the
marginal state may not be the stationary convection
rolls. The oscillatory mode may dominate the
instability in a film of small Prandtl number [ 19, 21].
and the neglected nonlinear effect may be dominat-
ingly important when the wave number approaches
Zero.

The analysis given in Section 2 was carried out for
the case of sin®« 1 and Ra = O (sin®®) but all other
flow parameters need not be small. For this case, the
forced convection acts as a higher order source term,
because of the small velocity associated with the
small ®. However, it can be seen from the expression
of U, that the convective term may still remain small
even if @ is not small if Pe = ¢« 1 and Ra = O(Pe?).
Since Pe = gd*/v,k,,. the latter case corresponds to
the creeping flow associated with large viscosity and
small film thickness. The stability analysis for this
case can be carried out in exactly the same manner
as that given in the previous section except the small
parameter ¢ of expansion is now Pe and ® must be
treated as a free parameter. Such analysis is not yet
available. It would be interesting to see whether the
marginal state of the surface tension driven in-
stability of a thin film on a heated incline is
streamwise oriented or transverse rolls when the
angle of inclination is near vertical. It is known that
for the case of buoyancy-driven instability the
neutral state is transverse rolls with their axis normal
to the mean flow if ® 1s near vertical [16, 17, 34, 35].

It should be pointed out that the present study is
relevant only to a very thin film flow in which
neither the gravity-capillary ripples nor the
buoyancy-driven convection is the dominating mode
of instability. The effects of surface tension variation
on the ripple formation have been studied by
Bankoff [36], Marschall and Lee [37] and Lin [38].

Quantitative experimental data for the present
problem are not available to the authors, and
comparisons between the theory and experiments
cannot be made presently.
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APPENDIX

In deriving the conditions to be applied at the unknown
perturbed free surface Y= B(X,Z.t), we neglect the shear
and inertial forces in the ambient gas and also the
nonlinear quantities in perturbations.

Since the time rate of displacement in the Y-direction 1s
by defimtion 17", we have the kinematic condition

1" = DB/Dt. (A1}
In order for each element of the free surface to have finite
accelerations in the X and Z directions, we must have
Unl Vi + 03+ U +S, =0 and u,(V;+Wy)+S, = 0.
(A2)
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Similarly, the force balance in the Y-direction requires

~(P+P =P,)+ 20, Vs +S(Byx+Bzz) = 0. (A3)
By use of the Newton’s heat-transfer law, the energy
balance at the free surface can be written as
kn( Ty + T7) = q(T+T'—T,). (A4)
Expanding all variables depending on Yaround Y=0 by
use of the Taylor series expansion, and retaining only linear
terms 1 perturbations, and using the primary flow
relations, the above boundary conditions at Y= B can be
reduced to the conditions at Y= 0:

V' = B,+UB,,
HnVix + Ve~ Wy +ByUyy)
+ [T+ Tzz+ T, (Byx +B1z)] = 0,
20, Vy+S(Byx+Byz)— pagBeos®{l +yAT)—p' =0,

I‘mT}” = q(’[;v‘*’BTY)-

Note that the two equations in (A2) have been combined
with the help of the continuity equation.

The nondimensionalization of length, time, velocity,
pressure, and temperature respectively by d, d*/x,. x./d,
pPak2/d? and AT then reduces the above conditions to (7)
given in Section 2.

INSTABILITE DUE A LA TENSION INTERFACIALE POUR UN
FILM LIQUIDE COULAND LE LONG D'UN PLAN INCLINE

Résume—On étudie par la théore linéaire la circulation stationnaire, pilotée par la tension superficielle,
dans un film mince coulant sur un plan incliné Dans le cas limite d’un film liquide horizontal, la
circulation apparait a des nombres critiques finis d'onde et de Marangoni pour une lare étendue des
parameétres d’écoulement si 'effet stabilisateur de la pesanteur, négligé par les chercheurs, est pris en
compte. S1 'angle d'inclinaison € est tel que sin 8 « 1 et si le nombre de Rayleigh est de Pordre de sin® 9,
la structure d'écoulement correspondant a I'état de stabilité neutre est celle de tourbillons orientés dans le
sens de I'écoulement. Le nombre critique de Marangont du film sur le plan incliné est plus petit que celui
du film horizontal d’une valeur sin? 8 F, ou F dépend des paramétres typiques de I'écoulement.

DURCH OBERFLACHENSPANNUNG ERZEUGTE INSTABILITAT EINES
AN EINER BEHEIZTEN, GENEIGTEN FLACHE HERABSTROMENDEN
FLUSSIGKEITSFILMS

Zusammenfassung—Mit einer linearen Theorte wird das Einsetzen der durch die Oberflichenspannung
erzeugten stationdren Zirkulationsstrémung emnes dunnen Films unter sucht, der an einer beheizten,
geneigten Flache herabstromt. Im Grenzfall eines horizontalen Fhissigkeitsfilms beginnt das Einsetzen
der Zirkulationsstromung bei endlichen kritischen Wellenzahlen und Marangoni-Zahlen fiir einen
grolen Bereich wichtiger Stromungsparameter, wenn die stabilisierende Wirkung der Schwerkraft, welche
bei friiheren Autoren vernachlassigt wurde, beriicksichtigt wird. Wenn der Neigungswinkel ¢ der Fliiche so
klein 1st, daB sin ¢ « 1 und wenn die Rayleigh-Zah! von der GroBenordnung sin 3¢ ist, dann hat die dem
neutral stabilen Zustand entsprechende Stromung die Struktur von in Stromungsrichtung orientierten
Wirbeln. Die knitische Marangoni—Zahl des Films an einer beheizten, geneigten Fliche ist um sin? ¢F
klemer als die des entsprechenden homzontalen Films, wobei F von wichtigen Strémungsparametern
abhangt.
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HEYCTOMYUBOCTb TEYEHUSA XWUAKON MJEHKU HA HATPETOW HAKJIOHHOWM
MOBEPXHOCTHU, BbI3BAHHASA CUNAMU NOBEPXHOCTHOI'O HATAXEHUSA

Annorains — C NOMOLLIO JMHEHHOH TEOpHHM HCCNERYeTCS BO3HUKHOBEHHME YCTOMYMBOIO LMPKY-
ASLMOHHOTO TEYEHHSN, BbI3BAHHOIO CUJIAMHU MNOBEPXHOCTHOTO HATHXKEHHA, NMPH CTEKAHWH TOHKOM
JIEHKH NO HAKJIOHHO! HarpeToil noBepxHocTH. HalneHo, 4To B npeaeIbHOM Cly4ae ropH3OHTaNIbHOM
WHOKON NJEHKM LMPKYIAUMOHHOE TEYEHHE MOXET HabnoaaTbCsi NPU KOHEYHLIX KPHUTHYECKHX
BOJIHOBBLIX YKCAAX W 4Yucnax MapaHroHu B LIMPOKOM [Hana3oOHE COOTBETCTBYIOLIMX MapaMeTpos
TEYEHHA, €C/IK YUMTHIBAETCH CTaOUNM3MpYyloliee BIKSHUE IpaBHTAUMHM, KOTOpas npeHeOperanach
NpeablAYLKMHK HeeneaoBaTeamu. FIpu Manbix yriaax Hak/ioHa (sin ¢ < 1) u uucnax Penes nopsaka
sin® ¢ cTpykTypa noroka, cooTBeTCTBYIOUIas HEATPAIBHO YCTOHYMBOMY COCTORHHIO, NPEACTABIAET
CcoBOH OPHEHTHPOBAHHbIE TIO MOTOKY BUXPH. 3HAUEHHUE KPUTHYECKOTO YHCNa MapaHroHy AN NMIEHKH
Ha HarpeTod HaKJOHHOH MOBEPXHOCTH MEHbLUE 3HAYCHUA A8 FOPH3OHTATLHON NAEHKH HA BENHYUHY
sin? $F, roe F asnsetca GyHKUHEH COOTBETCTBYIOUUX NAPAMETPOB TEYEHHUS.



